This previously unused lot at the peak of Garrard Street provided an opportunity for a multi-use attraction for community members of Garrard and Ganster Streets in Etna, PA. Though the slope up to the top of the site was a challenge, organic terracing forms respond to natural elevation changes in the landscape. These terraces provided the opportunity to incorporate community gardening and native species planting designs. The top of the hill is serves to accentuate the beautiful view of Etna through a plaza with overlook nodules. The site also features renewable energy demonstrations including solar panels and small-scale wind turbines. Finally, the site includes ADA-compliant components including trail surface paving, accessible garden beds, and a ramp system for plaza and overlook access.

This site plan gives a closer look at the orientation of design components and programs. The site systems are each highlighted on the next page.
The site design of Garrard Street is dependent upon several site systems which work together to create a welcoming and purposeful experience: renewable energy, native planting areas, plaza space, community gardens, and circulation, each highlighted in orange in the respective site plans.

Some aspects of the project could be completed in phases. This diagram shows how the number of raised community garden beds could be increased in response to the demand for garden space by the community.

SITE SYSTEMS

The site design of Garrard Street is dependent upon several site systems which work together to create a welcoming and purposeful experience: renewable energy, native planting areas, plaza space, community gardens, and circulation, each highlighted in orange in the respective site plans.

Some aspects of the project could be completed in phases. This diagram shows how the number of raised community garden beds could be increased in response to the demand for garden space by the community.

SITE SYSTEMS

The site design of Garrard Street is dependent upon several site systems which work together to create a welcoming and purposeful experience: renewable energy, native planting areas, plaza space, community gardens, and circulation, each highlighted in orange in the respective site plans.

Some aspects of the project could be completed in phases. This diagram shows how the number of raised community garden beds could be increased in response to the demand for garden space by the community.

SITE SYSTEMS

The site design of Garrard Street is dependent upon several site systems which work together to create a welcoming and purposeful experience: renewable energy, native planting areas, plaza space, community gardens, and circulation, each highlighted in orange in the respective site plans.

Some aspects of the project could be completed in phases. This diagram shows how the number of raised community garden beds could be increased in response to the demand for garden space by the community.

SITE SYSTEMS

The site design of Garrard Street is dependent upon several site systems which work together to create a welcoming and purposeful experience: renewable energy, native planting areas, plaza space, community gardens, and circulation, each highlighted in orange in the respective site plans.

Some aspects of the project could be completed in phases. This diagram shows how the number of raised community garden beds could be increased in response to the demand for garden space by the community.

SITE SYSTEMS

The site design of Garrard Street is dependent upon several site systems which work together to create a welcoming and purposeful experience: renewable energy, native planting areas, plaza space, community gardens, and circulation, each highlighted in orange in the respective site plans.

Some aspects of the project could be completed in phases. This diagram shows how the number of raised community garden beds could be increased in response to the demand for garden space by the community.

SITE SYSTEMS

The site design of Garrard Street is dependent upon several site systems which work together to create a welcoming and purposeful experience: renewable energy, native planting areas, plaza space, community gardens, and circulation, each highlighted in orange in the respective site plans.

Some aspects of the project could be completed in phases. This diagram shows how the number of raised community garden beds could be increased in response to the demand for garden space by the community.
Material Palette:
1. Tempered Glass
2. Trail surface aggregate
3. ADA-compliant permeable paving
4. Stone: Gabion Baskets
5. Reclaimed oiled white oak
6. Galvanized steel

The planting palette draws entirely from plants which are native to Pennsylvania, providing habitat for pollinators and needing as little maintenance as possible.

The materials palette draws inspiration from materials commonly used in the Pittsburgh region, while sourcing reclaimed materials where possible.
The positioning of solar panels and community garden beds are done so that maximum sun angles can be obtained, with little to no shadow coverage, as seen through the timed series of images to the right and sun angle diagram below.

A QR code will be present on site, when scanned it will link to a web page which loads live data reporting energy production from the solar panels and small scale wind turbines of the renewable energy demonstration.

An ADA-compliant ramp series made from galvanized steel and trail surface aggregate works with the gabion terracing providing an accessible path to the top plaza.

Accessible community garden planting benches are wheelchair accessible, movable stools are also present to give the option of sitting while working for those who do not use wheelchairs.

Stair access is also available for those who wish to use them to move up and down from street level to the top plaza.

This view shows the native planting in the plaza, as well as one of the overlook nodules which features the view of Etna Borough.
ACKNOWLEDGEMENTS

A special thank you goes out to key partners: Mary Ellen Ramage and Talia O’Brien from Etna Borough, Tom Bartnik and David Himes of Penn State Center Pittsburgh. Additional thanks to Ken Tamminga, professor of LARCH 414 Pittsburgh Studio.

REFERENCES

Shed Model: Modern Shed (SketchUp)
https://tampasteel.com/what-is-galvanized-metal/
https://www.tirtandgravel.psu.edu/center/trails/centers-trail-projects
https://www.homedepot.com/Buy-E620000423-6000636_B1_159263
https://www.bricoflor.co.uk/berryalloc-orignal-e2001359-white-oiled-oak.html
https://customglassandmirrors.com/type-of-glass/tempered-glass
https://www.naturehills.com/grass-the-blues-little-bluestem
https://www.outsidepride.com/seed/native-grass-seed/indian-native-grass-seed.html
https://www.ruppertnurseries.com/inventories/juniperus-virginiana-emerald-sentinel/
https://www.shkspmob.com/blog/2020/04/comparing-solar-panel-generation/
https://etap.com/product/wind-turbine-generator-software